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SELF-OSCILLATIONS OF A WHEEL ON SELF-ORIENTATING STRUT 
OF AN UNDERCARRIAGE WITH NONLINEAR DAMPER* 

L.G. LOBAS 

Under the assumptions of the drift hypothesis the perturbation methods are used to 

determine the amplitude and frequency of free oscillations of a wheel on a self- 

orientating strut subjected to flexural deformations. The strut is fitted with a 

square damper generating a turbulent resistance and coupled in parallel with an 

elastic element. When such a system reaches a certain velocity, it becomes potenti- 

ally self-oscillating. A limiting cycle is found and an example of computing the 

amplitude and frequency of the self-oscillations is given. 

The oscillations of the system are described by two, uniformly moving oscillators, the 

rotation of the wheel providing a gyroscopic coupling between them as well as a directed coup- 

ling determined by the reaction of the runway on the foot of the undercarriage 

(1) 

Here e and Q are the angles of yaw and roll, B and C are the moments of inertia of the under- 

carriage relative to the axis of strut and roll respectively, h and h, are the linear viscous 
friction coefficients, k, and k are rigidities, I and r denote the axial moment of inertia and 
the wheel radius respectively, u is velocity of motion, a1 is the drift resistance coefficient, 
cd is the damper resistance coefficient and 1 is the distance between the runway surface and 

the axis of roll. 
The gyroscopic and directed coupling form, in the system in question, a cycle which may 

lead to instability of the rectilinear motion and self-induced oscillation of the foot of the 

undercarriage (shimmy). The engine represents the external energy source responsible for the 

directed coupling. The eigenvalues of the matrix of the linear part of the system (1) have 
negative real parts when 

1 < 1, = (MB + h,,‘L) -(hk + h,k,)“:u, 

When 1> I,, a value v0 of the velocity of motion exists such that when u<ua, then the linear 
system remains asymptotically stable. 

@!I* U"') . 
The real parts of two eigenvalues are positive of VE 

Moreover, the value of u0 decreases and that of uO' increases with increasing I.Thus 
the asymptotic stability of a linear system is replaced, during the passage through 

instability. 
VQ, by 

Since the condition l/,1, cannot be realized in practice, an additional square 
damper must be used /2/, and to determine its resistance coefficient and the magnitude of ad- 

missible clearance, the amplitudes and frequencies of the resulting self-oscillations must al- 
so be found. Below we solve the latter problem in the first approximation, using the asymp- 
totic method of expanding the derivatives /3/. Putting z1 = tl, zp = H', z3 = 1:. 1, = $', we write the 
system (I) in the form 

x' = Ax - dx2*sign r2 (2) 
0 I 0 0 =I 

-E, --co 0 Du 2.T 

A= o 
0 0 1 ‘x=%. 

- II, - D,u - EO ---c$ I II 34 

co = hlB, E, = k,lB, D = IB-‘r-1, kd = Cd/B 
E$ = h,iC, Ee = k I C, D, = IC-‘r’. If, = all 

Let us set Y = v0 + EVA + 0 (E*). To find the amplitude and frequency of the self-oscillations, we 
shall seek a solution to the equation (2) for v>v,, in the form 

I = Ego+e$+. , qo= COl(Ql”. I 4.0). 4% = co1 (q,,. 5 P&l)0 
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Here E = (V - 0,) /I+ -C 0 (~2). e > 0 when c .> (1" and v .= 0 when Y = Q. Let us set h : I and i:ltrocuct* ti,,. 

slow time variables (, r= F'!, t = I.Z..... Then dtdr = a/at, + ~d!dr~ -; Gdidr, --... and we have the io! ::.L:-- 
ing expressions for determining q,: 

1.q" 0. I.q, - -- oq,,i0,, -;- V,.4,qo dq,,‘i ‘IL’!! q:u. 
: 

I, Et d/dl, - ..I,. A, -. I ,,,:. u 

Here A, is a matrix the only nonzcro element of which is (Al),,= -.D,. The eigeLvalues C,f :.!;: 
matrix A, are p,,2 = +a,,. Hep,,, < 0. the - and the right eigenvector corresponding to ti ,jC:?Vdilie 
i!l, is collinear with the vector 

I, = co1 (1, :I!,, [to!!,, e i (Q,~ - Eo:] I)-+,-‘Qo-‘9 (E, - !?“‘+ ‘F&) D-‘oo-‘} 
!!,’ =: (Y&*f FyEe +- UH,l’“) (te + I J’ 

where R, is the frequency of the llr.ear system. From the first equation of (3) we have 

q, 7. 2oH1. lu~‘\-[, (I( 
V --- Q,!, -, 'lo. 0 = II (II. 1%,. .). ‘F. = q. (f,, I*,. .) 

Let us write the last term of the second equation of (3) in terms of a complex Fourier series 

From (3) It follows that q, is given by the equation 

Let U=- (I',...../ ,) be the first ciqenvector of the matrix A, correspondlngto thecigenvaluc 

111, i.e. 
I: (A" .- .I?&) .= 1) ( ‘5 i 

We introduce the scalar :-= Uq,. and hence obtain l:A,q, :-- iQ,-. The expression for .:, and hence 

for q,, will not contain secular terms if 

-,lil 0;, &q '11, .. 0 (0 : lp,) -- a* (y -7. I)‘,) := 0 i I: I 
6 .- 6 i IrL 11 A,“. ., : z:‘, .- C’lk,. a UII 

Therefore 

0 fl[Kerp(-- ;;:,)T *;I-‘, ‘, <!,,I,, !- gy,/y - p,j I, :. 0 (7, 
d ‘/,i‘-‘ill(Kc~;:p~ p,, ‘.I -lq.,,l:.I ,.._. !. K ..K(!_.I, . ...) 

and hence 

I) -- “. ,,.n++ 0 (r ‘!. 0 -%nil,sin~ : 0 (P') 

+ ?!I) !~.,-~a jcO rosq + (E$,- --- IZ,)sinqI i- 0 (cc) 

Y 2. l,/-‘L,,-b [(I:‘,, - ~~,~)ros~ - F&sinT! + 0 (t'l 

The periodic Solution is established ;n the system after a certain time has elapsed. 'To 

obtain such a solution, we must assume the time to be sufficiently long, and to separate, fro- 

amongst the limiting cycles, the s:able cycles. In accordance with the procedure of the asym- 

ptotic multiscale method, the period of time after which the self-oscillatory regio!i is cstab- 

lished, corresponds to II -.. +T. I.e. the Conditions of existence of a 1imitir:g c:K.le .<I c, 

determined by the behavior of the function a(~,) at infinity. 
For a linear system d =(I, therefore e., -:O. y -0. yl=--0. This implies that 0 -= I)K FY,, ($1,) 

When v<+, the linear system is asymptotically stable, consequently fi c:O wheR " <.I ",>. Si:,cr 

the linear system is unstable when v ,:, 4, , we have p>O when v> V". 

For the nonlinear system of (7) we obtain, for the caSe y > U, 0 < 0, Iim,~..~, 0 -. Il. p ;> 0. Ilu,,,A, u -. 

p: y. Let us consider the nonlinetir system for the Case s<Il. The behavior of the functlor. 

,,(I,) at p<O is shown in Fig's.1 an3 2. If the initral value of the amplitude is snlallfr !!'~a!. 

the amplitude of the limiting cycle, then the motion is stable since lim,,.,,, a=- 0 when 0 I,,= n 

fi(R+ y)-*<@!y(Fig.l). Otherwise! the motion is unstable since lim,I_l,,a= -too when 0 /l,;-o ;, B ., 
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(Fig.2). (Here 110= -fi-'ln (-_v / 0. The results depicted in Fig.3 imply that the motion is un- 

stable when fi>O. Thus if v<O, then we have an unstable limiting cycle when P < 0 (u < co) 

while the motion is unstable when B>O. a___ t,; : I 

----r- --- -----i 

/-! ___A 

Fig. 3 

Fig.1 
Fig.2 

The limiting cycle in question forms the boundaries of the region of attraction of the ncll 

solution. In the case of ;:>o the motion is stable when p<O, and a stable limiting cycle 

exists when fl>O. We have for this cycle 

e = ecos (nt, + 6,) + 0 @a), 8 = 2 (U - uO)vl-'By-' 
n = Q, - (U - vo)U1-' (&/y - &), 6, = cons1 

From (4)- (6) we obtain 

For the particular numerical values of B = 9.81 kgm2, c=165kgm2, i1=37 m.s , h,=981 m.s 

k, = 12200 m, k = 421000 m, -i 
and $2, = 53.8 s -1 

1 = 11.8 kg m2, r=0.4 m, l=O.8 m, o, = 42670 n, we have v0 = 17.% m.s 
. The dependence of the shimmy amplitude 0 on U-Q is linear within the given 

approximation. In the present case the proportionality coefficient for the values of kd = 1.0, 

3.r~, 5.0 and 10.0 equals, respectively, to 2.10-*, 4.97.10+, 3.23.10-3, 1.29.10-3 rad.s/m. The shimmy 
amplitude decreases with increasing value of kd of the square damper. The shimmy period T= 
2n/R is independent of the magnitude of kd; 

o,, = 8.12.10-* s-l and 
for the present case we have 

WI = 5.17.10-' cm-l. 
T = WI (U - UC,) T 009 

The frequency Q of the nonlinear system is smallerthan 
the frequency Q, of the linear system. The shimmy amplitude can be controlled so as to keep 
it within the safe limits, by choosing the corresponding coefficient of resistance of the 
square damper. 

REFERENCES 

1. GOZDEK V-S., On the influence of various parameters on the stability of motion of self- 
orientating aircraft wheels. Tr. TsAGI, No.917, 1964. 

2. GORDON J-T., MERCHANT H.C., An asymptotic method for predicting amplitudes of nonlinear 
wheel shimmy. J. Aircraft Vo1.15, No.3, 1978. 

3. NAIFE A.Kh., Perturbation Methods. Moscow, MIR, 1976. 

Translated by L.K. 


